3.350 \(\int \frac{(c+a^2 c x^2)^3}{\sinh ^{-1}(a x)} \, dx\)

Optimal. Leaf size=67 \[ \frac{35 c^3 \text{Chi}\left (\sinh ^{-1}(a x)\right )}{64 a}+\frac{21 c^3 \text{Chi}\left (3 \sinh ^{-1}(a x)\right )}{64 a}+\frac{7 c^3 \text{Chi}\left (5 \sinh ^{-1}(a x)\right )}{64 a}+\frac{c^3 \text{Chi}\left (7 \sinh ^{-1}(a x)\right )}{64 a} \]

[Out]

(35*c^3*CoshIntegral[ArcSinh[a*x]])/(64*a) + (21*c^3*CoshIntegral[3*ArcSinh[a*x]])/(64*a) + (7*c^3*CoshIntegra
l[5*ArcSinh[a*x]])/(64*a) + (c^3*CoshIntegral[7*ArcSinh[a*x]])/(64*a)

________________________________________________________________________________________

Rubi [A]  time = 0.114914, antiderivative size = 67, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {5699, 3312, 3301} \[ \frac{35 c^3 \text{Chi}\left (\sinh ^{-1}(a x)\right )}{64 a}+\frac{21 c^3 \text{Chi}\left (3 \sinh ^{-1}(a x)\right )}{64 a}+\frac{7 c^3 \text{Chi}\left (5 \sinh ^{-1}(a x)\right )}{64 a}+\frac{c^3 \text{Chi}\left (7 \sinh ^{-1}(a x)\right )}{64 a} \]

Antiderivative was successfully verified.

[In]

Int[(c + a^2*c*x^2)^3/ArcSinh[a*x],x]

[Out]

(35*c^3*CoshIntegral[ArcSinh[a*x]])/(64*a) + (21*c^3*CoshIntegral[3*ArcSinh[a*x]])/(64*a) + (7*c^3*CoshIntegra
l[5*ArcSinh[a*x]])/(64*a) + (c^3*CoshIntegral[7*ArcSinh[a*x]])/(64*a)

Rule 5699

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c, Subst[Int[
(a + b*x)^n*Cosh[x]^(2*p + 1), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IG
tQ[2*p, 0] && (IntegerQ[p] || GtQ[d, 0])

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{\left (c+a^2 c x^2\right )^3}{\sinh ^{-1}(a x)} \, dx &=\frac{c^3 \operatorname{Subst}\left (\int \frac{\cosh ^7(x)}{x} \, dx,x,\sinh ^{-1}(a x)\right )}{a}\\ &=\frac{c^3 \operatorname{Subst}\left (\int \left (\frac{35 \cosh (x)}{64 x}+\frac{21 \cosh (3 x)}{64 x}+\frac{7 \cosh (5 x)}{64 x}+\frac{\cosh (7 x)}{64 x}\right ) \, dx,x,\sinh ^{-1}(a x)\right )}{a}\\ &=\frac{c^3 \operatorname{Subst}\left (\int \frac{\cosh (7 x)}{x} \, dx,x,\sinh ^{-1}(a x)\right )}{64 a}+\frac{\left (7 c^3\right ) \operatorname{Subst}\left (\int \frac{\cosh (5 x)}{x} \, dx,x,\sinh ^{-1}(a x)\right )}{64 a}+\frac{\left (21 c^3\right ) \operatorname{Subst}\left (\int \frac{\cosh (3 x)}{x} \, dx,x,\sinh ^{-1}(a x)\right )}{64 a}+\frac{\left (35 c^3\right ) \operatorname{Subst}\left (\int \frac{\cosh (x)}{x} \, dx,x,\sinh ^{-1}(a x)\right )}{64 a}\\ &=\frac{35 c^3 \text{Chi}\left (\sinh ^{-1}(a x)\right )}{64 a}+\frac{21 c^3 \text{Chi}\left (3 \sinh ^{-1}(a x)\right )}{64 a}+\frac{7 c^3 \text{Chi}\left (5 \sinh ^{-1}(a x)\right )}{64 a}+\frac{c^3 \text{Chi}\left (7 \sinh ^{-1}(a x)\right )}{64 a}\\ \end{align*}

Mathematica [A]  time = 0.113499, size = 43, normalized size = 0.64 \[ \frac{c^3 \left (35 \text{Chi}\left (\sinh ^{-1}(a x)\right )+21 \text{Chi}\left (3 \sinh ^{-1}(a x)\right )+7 \text{Chi}\left (5 \sinh ^{-1}(a x)\right )+\text{Chi}\left (7 \sinh ^{-1}(a x)\right )\right )}{64 a} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + a^2*c*x^2)^3/ArcSinh[a*x],x]

[Out]

(c^3*(35*CoshIntegral[ArcSinh[a*x]] + 21*CoshIntegral[3*ArcSinh[a*x]] + 7*CoshIntegral[5*ArcSinh[a*x]] + CoshI
ntegral[7*ArcSinh[a*x]]))/(64*a)

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 42, normalized size = 0.6 \begin{align*}{\frac{{c}^{3} \left ( 35\,{\it Chi} \left ({\it Arcsinh} \left ( ax \right ) \right ) +21\,{\it Chi} \left ( 3\,{\it Arcsinh} \left ( ax \right ) \right ) +7\,{\it Chi} \left ( 5\,{\it Arcsinh} \left ( ax \right ) \right ) +{\it Chi} \left ( 7\,{\it Arcsinh} \left ( ax \right ) \right ) \right ) }{64\,a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a^2*c*x^2+c)^3/arcsinh(a*x),x)

[Out]

1/64/a*c^3*(35*Chi(arcsinh(a*x))+21*Chi(3*arcsinh(a*x))+7*Chi(5*arcsinh(a*x))+Chi(7*arcsinh(a*x)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a^{2} c x^{2} + c\right )}^{3}}{\operatorname{arsinh}\left (a x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^3/arcsinh(a*x),x, algorithm="maxima")

[Out]

integrate((a^2*c*x^2 + c)^3/arcsinh(a*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a^{6} c^{3} x^{6} + 3 \, a^{4} c^{3} x^{4} + 3 \, a^{2} c^{3} x^{2} + c^{3}}{\operatorname{arsinh}\left (a x\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^3/arcsinh(a*x),x, algorithm="fricas")

[Out]

integral((a^6*c^3*x^6 + 3*a^4*c^3*x^4 + 3*a^2*c^3*x^2 + c^3)/arcsinh(a*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} c^{3} \left (\int \frac{3 a^{2} x^{2}}{\operatorname{asinh}{\left (a x \right )}}\, dx + \int \frac{3 a^{4} x^{4}}{\operatorname{asinh}{\left (a x \right )}}\, dx + \int \frac{a^{6} x^{6}}{\operatorname{asinh}{\left (a x \right )}}\, dx + \int \frac{1}{\operatorname{asinh}{\left (a x \right )}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a**2*c*x**2+c)**3/asinh(a*x),x)

[Out]

c**3*(Integral(3*a**2*x**2/asinh(a*x), x) + Integral(3*a**4*x**4/asinh(a*x), x) + Integral(a**6*x**6/asinh(a*x
), x) + Integral(1/asinh(a*x), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a^{2} c x^{2} + c\right )}^{3}}{\operatorname{arsinh}\left (a x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a^2*c*x^2+c)^3/arcsinh(a*x),x, algorithm="giac")

[Out]

integrate((a^2*c*x^2 + c)^3/arcsinh(a*x), x)